查看原文
其他

【专知荟萃05】聊天机器人Chatbot知识资料全集(入门/进阶/论文/软件/数据/专家等)(附pdf下载)

2017-11-05 专知内容组 专知

点击上方“专知”关注获取更多AI知识!


【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢! 今天专知为大家呈送第五篇专知主题荟萃-聊天机器人ChatBot知识资料全集荟萃 (入门/进阶/论文/软件/数据/专家等),请大家查看!专知访问www.zhuanzhi.ai,  或关注微信公众号后台回复" 专知"进入专知,搜索主题“chatbot”查看。欢迎转发分享!此外,我们也提供该文pdf下载链接,请文章末尾查看


了解专知,专知,一个新的认知方式!


  • 聊天机器人 (Chatbot) 专知荟萃

    • 入门学习

    • 进阶论文

    • 综述

    • 专门会议

    • Tutorial

    • 软件

      • Chatbot

      • Chinese_Chatbot

    • 数据集

    • 领域专家


聊天机器人 (Chatbot) 专知荟萃

入门学习

  1. 对话系统的历史(聊天机器人发展)

  • [http://blog.csdn.net/zhoubl668/article/details/8490310]

  • 微软邓力:对话系统的分类与发展历程

    • [https://www.leiphone.com/news/201703/6PNNwLXouKQ3EyI5.html]

  • Deep Learning for Chatbots, Part 1 – Introduction 聊天机器人中的深度学习技术之一:导读

    • [http://www.jeyzhang.com/deep-learning-for-chatbots-1.html]

    • [http://www.wildml.com/2016/04/deep-learning-for-chatbots-part-1-introduction/]

  • Deep Learning for Chatbots, Part 2 – Implementing a Retrieval-Based Model in Tensorflow  聊天机器人中的深度学习技术之二:基于检索模型的实现

    • [http://www.jeyzhang.com/deep-learning-for-chatbots-2.html]

    • [http://www.wildml.com/2016/07/deep-learning-for-chatbots-2-retrieval-based-model-tensorflow/]

  • 自己动手做聊天机器人教程(1-42)

    • [https://github.com/warmheartli/ChatBotCourse]

  • 如何让人工智能助理杜绝“智障”  微软亚洲研究院

    • [http://www.msra.cn/zh-cn/news/features/virtual-personal-assistant-20170411]

  • 周明:自然语言对话引擎  微软亚洲研究院

    • [http://www.msra.cn/zh-cn/news/features/ming-zhou-conversation-engine-20170413]

  • 谢幸:用户画像、性格分析与聊天机器人

    • [http://www.msra.cn/zh-cn/news/features/xing-xie-speech-20170324]

  • 25 Chatbot Platforms: A Comparative Table

    • [https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff]

  • 聊天机器人开发指南   IBM

    • [https://www.ibm.com/developerworks/cn/cognitive/library/cc-cognitive-chatbot-guide/index.html]

  • 朱小燕:对话系统中的NLP

  • 使用深度学习打造智能聊天机器人   张俊林

    • [http://blog.csdn.net/malefactor/article/details/51901115]

  • 九款工具帮您打造属于自己的聊天机器人

    • [http://mobile.51cto.com/hot-520148.htm]

  • 聊天机器人中对话模板的高效匹配方法

    • [http://blog.csdn.net/malefactor/article/details/52166235]

  • 中国计算机学会通讯 2017年第9期   人机对话专刊

    • 对话系统评价技术进展及展望                   by 张伟男 车万翔

    • 人机对话                                                      by 刘 挺 张伟男

    • 任务型与问答型对话系统中的语言理解技术  by 车万翔 张 宇

    • 聊天机器人的技术及展望                            by 武 威 周 明

    • 人机对话中的情绪感知与表达                     by 黄民烈 朱小燕

    • 对话式交互与个性化推荐                            by 胡云华

    • 对话智能与认知型口语交互界面                  by 俞 凯

    • [https://pan.baidu.com/s/1o8Lv138]

  • 中国人工智能学会通讯

    • 从图灵测试到智能信息获取                 郝 宇,朱小燕,黄民烈

    • 智能问答技术                                       何世柱,张元哲,刘 康,赵 军

    • 社区问答系统及相关技术                                 王 斌,吉宗诚

    • 聊天机器人技术的研究进展                              张伟男,刘 挺

    • 如何评价智能问答系统                                       黄萱菁

    • 智能助手: 走出科幻,步入现实                        赵世奇,吴华

    • [http://caai.cn/index.php?s=/Home/Article/qikandetail/year/2016/month/01.html]


    进阶论文

    1. Sequence to Sequence Learning with Neural Networks

    • [http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf]

  • A Neural Conversational Model   Oriol Vinyals, Quoc Le

    • [http://arxiv.org/pdf/1506.05869v1.pdf]

  • A Diversity-Promoting Objective Function for Neural Conversation Models

  • A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues

    • [https://arxiv.org/abs/1605.06069]

  • Sequence to Backward and Forward Sequences: A Content-Introducing Approach to Generative Short-Text Conversation

    • [https://arxiv.org/abs/1607.00970]

  •  A Persona-Based Neural Conversation Model

    • [https://arxiv.org/abs/1603.06155]

  • Deep Reinforcement Learning for Dialogue Generation

    • [https://arxiv.org/abs/1606.01541]

  •  End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning

    • [https://arxiv.org/abs/1606.01269]

  • A Network-based End-to-End Trainable Task-oriented Dialogue System

    • [https://arxiv.org/abs/1604.04562]

  •  Incorporating Unstructured Textual Knowledge Sources into Neural Dialogue Systems

    • [http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/871]

  • A Neural Network Approach to Context-Sensitive Generation of Conversational Responses

    • [https://arxiv.org/abs/1506.06714]

  • A Dataset for Research on Short-Text Conversation

    • [http://staff.ustc.edu.cn/~cheneh/paper_pdf/2013/HaoWang.pdf\]

  • The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems

    • [https://arxiv.org/abs/1506.08909]

  • Joint Online Spoken Language Understanding and Language Modeling with Recurrent Neural Networks, 2016

    • [https://arxiv.org/abs/1609.01462]

  • Neural Utterance Ranking Model for Conversational Dialogue Systems, 2016

    • [https://www.researchgate.net/publication/312250877_Neural_Utterance_Ranking_Model_for_Conversational_Dialogue_Systems\

  • A Context-aware Natural Language Generator for Dialogue Systems, 2016

    • [https://arxiv.org/abs/1608.07076]

  • Task Lineages: Dialog State Tracking for Flexible Interaction, 2016

    • [https://www.microsoft.com/en-us/research/publication/task-lineages-dialog-state-tracking-flexible-interaction-2/]

  • Affective Neural Response Generation

    • [https://arxiv.org/abs/1709.03968]

  • Multi-Task Learning for Speaker-Role Adaptation in Neural Conversation Models

    • [https://arxiv.org/abs/1710.07388]

  • Chatbot Evaluation and Database Expansion via Crowdsourcing

    • [http://www.cs.cmu.edu/afs/cs/user/zhouyu/www/LREC.pdf]

  • A Neural Network Approach for Knowledge-Driven Response Generation

    • [http://www.aclweb.org/anthology/C16-1318]

  • Training End-to-End Dialogue Systems with the Ubuntu Dialogue Corpus

    • [http://www.cs.toronto.edu/~lcharlin/papers/ubuntu_dialogue_dd17.pdf\]

  • Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory  ACL 2017

    • [https://arxiv.org/abs/1704.01074]

  • Flexible End-to-End Dialogue System for Knowledge Grounded Conversation

    • [https://arxiv.org/abs/1709.04264]

  • Augmenting End-to-End Dialog Systems with Commonsense Knowledge

    • [https://arxiv.org/abs/1709.05453]

  • Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems

    • [https://arxiv.org/abs/1511.06931]

  • Attention with Intention for a Neural Network Conversation Model

    • [https://arxiv.org/abs/1510.08565]

  • Response Selection with Topic Clues for Retrieval-based Chatbots

    • [https://arxiv.org/abs/1605.00090]

  • LSTM based Conversation Models

    • [https://arxiv.org/abs/1603.09457]

  • Not All Dialogues are Created Equal: Instance Weighting for Neural Conversational Models

    • [https://arxiv.org/abs/1704.08966]

  • Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders   ACL 2017

    • [https://arxiv.org/abs/1703.10960]

  • Words Or Characters? Fine-Grained Gating For Reading Comprehension    ACL 2017

    • [https://arxiv.org/abs/1611.01724v1]


    综述

    1. The Dialog State Tracking Challenge Series: A Review

    • [https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/williams2016dstc_overview-1.pdf\]

  • A Survey of Available Corpora for Building Data-Driven Dialogue Systems

    • [https://arxiv.org/abs/1512.05742]

  • 任务型人机对话系统中的认知技术——— 概念、进展及其未来

    • [http://cjc.ict.ac.cn/online/cre/yk-2015112465445-20151210162142.pdf]


    专门会议

    1. SIGDIAL ACL所属的关于对话系统的兴趣小组

    • [http://www.sigdial.org/workshops/conference18/]

  • INTERSPEECH 2017: INTERSPEECH 2017 which will take place on August 21-24 in Stockholm, Sweden, after SIGDIAL

  • YRRSDS 2017: Young Researchers’ Roundtable on Spoken Dialog Systems, which will take place on August 13-14 also in Saarbrücken, Germany, right before SIGDIAL.

  • SemDial 2017!

    • [http://www.saardial.uni-saarland.de/]

  • Dialog System Technology Challenge (DSTC)

    • [https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge/]

    • [https://github.com/mesnilgr/is13]


    Tutorial

    1. 2017 Tutorial - Deep Learning for Dialogue Systems  ACL 2017

    • [https://sites.google.com/site/deeplearningdialogue/]

  • Research Blog: Computer, respond to this email.

    • [https://research.googleblog.com/2015/11/computer-respond-to-this-email.html]

  • Deep Learning for Chatbots, Part 1 – Introduction

    • [http://www.wildml.com/2016/04/deep-learning-for-chatbots-part-1-introduction/]

  • Deep Learning for Chatbots, Part 2 – Implementing a Retrieval-Based Model in Tensorflow

    • [http://www.wildml.com/2016/07/deep-learning-for-chatbots-2-retrieval-based-model-tensorflow/]

  • Chatbot Fundamentals An interactive guide to writing bots in Python

    • [https://apps.worldwritable.com/tutorials/chatbot/]

  • Chatbot Tutorial

    • [https://www.codeproject.com/Articles/36106/Chatbot-Tutorial#intro]


    软件

    Chatbot

    1. ParlAI A framework for training and evaluating AI models on a variety of openly available dialog datasets.

    • [https://github.com/facebookresearch/ParlAI]

  • stanford-tensorflow-tutorials A neural chatbot using sequence to sequence model with attentional decoder.

    • [https://github.com/chiphuyen/stanford-tensorflow-tutorials/tree/master/assignments/chatbot]

  • ChatterBot ChatterBot is a machine learning, conversational dialog engine for creating chat bots

    • [http://chatterbot.readthedocs.io/]

  • DeepQA My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

    • [https://github.com/Conchylicultor/DeepQA]

  • neuralconvo Neural conversational model in Torch

    • [https://github.com/macournoyer/neuralconvo]

  • chatbot-rnn A toy chatbot powered by deep learning and trained on data from Reddit

    • [https://github.com/pender/chatbot-rnn]

  • tf_seq2seq_chatbot tensorflow seq2seq chatbot

    • [https://github.com/nicolas-ivanov/tf_seq2seq_chatbot]

  • ai-chatbot-framework A python chatbot framework with Natural Language Understanding and Artificial Intelligence.

    • [https://github.com/alfredfrancis/ai-chatbot-framework]

  • DeepChatModels Conversation Models in Tensorflow

    • [https://github.com/mckinziebrandon/DeepChatModels]

  • Chatbot Build your own chatbot base on IBM Watson

    • [https://webchatbot.mybluemix.net/]

  • Chatbot An AI Based Chatbot

    • [http://chatbot.sohelamin.com/]

  • neural-chatbot A chatbot based on seq2seq architecture done with tensorflow.

    • [https://github.com/inikdom/neural-chatbot]


    Chinese_Chatbot

    1. Seq2Seq_Chatbot_QA 使用TensorFlow实现的Sequence to Sequence的聊天机器人模型

    • [https://github.com/qhduan/Seq2Seq_Chatbot_QA]

  • Chatbot 基於向量匹配的情境式聊天機器人

    • [https://github.com/zake7749/Chatbot]

  • chatbot-zh-torch7 中文Neural conversational model in Torch

    • [https://github.com/majoressense/chatbot-zh-torch7]


    数据集

    1. Cornell Movie-Dialogs Corpus

    • [http://www.cs.cornell.edu/cristian/CornellMovie-DialogsCorpus.html]

  • Dialog_Corpus Datasets for Training Chatbot System

    • [https://github.com/candlewill/Dialog_Corpus]

  • OpenSubtitles A series of scripts to download and parse the OpenSubtitles corpus.

    • [https://github.com/AlJohri/OpenSubtitles]

  • insuranceqa-corpus-zh OpenData in insurance area for Machine Learning Tasks

    • [https://github.com/Samurais/insuranceqa-corpus-zh]

  • dgk_lost_conv dgk_lost_conv 中文对白语料 chinese conversation corpus

  • [https://github.com/majoressense/dgk_lost_conv]

  • Frames: A Corpus for Adding Memory to Goal-Oriented Dialogue Systems 一共 1369 段对话,平均每段对话 15 轮。

    • [http://datasets.maluuba.com/Frames]

  • Ubuntu Dialogue Corpus

    • [http://dataset.cs.mcgill.ca/ubuntu-corpus-1.0/]


    领域专家

    1. Cambridge Dialogue Systems Group Steve Young

    • [http://mi.eng.cam.ac.uk/research/dialogue/]

  • Ming Zhou

    • [https://www.microsoft.com/en-us/research/people/mingzhou/]

  • Jiwei Li(李纪为), - [http://web.stanford.edu/jiweil/]

  • Ryan Lowe, - [http://cs.mcgill.ca/rlowe1/]

  • Lili Mou

    • [https://lili-mou.github.io/]

  • Jason Williams Microsoft

    • [https://www.microsoft.com/en-us/research/people/jawillia/]

  • Bing Liu (刘冰) CMU

    • [http://bingliu.me/]

  • Ian Lane

    • [http://www.cs.cmu.edu/~ianlane/#&panel1-1]

  • Ondřej Dušek

    • https://ufal.mff.cuni.cz/ondrej-dusek

  • Sungjin Lee 微软

    • [https://www.microsoft.com/en-us/research/people/sule/]

  • Zhou Yu   俞舟 CMU

    • [http://www.cs.cmu.edu/~zhouyu/]

  • 华为诺亚实验室

    • [http://www.noahlab.com.hk/topics/ShortTextConversation]

  • 刘挺 哈尔滨工业大学

    • [http://ir.hit.edu.cn/~tliu]

  • 张伟男 哈尔滨工业大学  - [http://ir.hit.edu.cn/~wnzhang]

  • Wei Wu (武威) 微软

    • [https://www.microsoft.com/en-us/research/people/wuwei/]

  • 赵军 中科院自动化所

    • [http://www.nlpr.ia.ac.cn/cip/jzhao.htm]

  • 黄民烈 清华

    • [http://aihuang.org/p/]




    汇总不全面,欢迎补全和提建议,敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取最新AI相关知识




    特注:

    最新更新,请登录www.zhuanzhi.ai或者点击阅读原文,顶端搜索“ 聊天机器人” 主题,查看获得自动问答专知荟萃全集知识等资料!如下图所示~ 


    此外,请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知),

    • 后台回复“chatbot” 或者“聊天机器人”就可以获取专知聊天机器人荟萃知识资料pdf下载链接~~


    更多专知荟萃知识资料全集获取,请查看:

    【专知荟萃01】深度学习知识资料大全集(入门/进阶/论文/代码/数据/综述/领域专家等)(附pdf下载)

    【专知荟萃02】自然语言处理NLP知识资料大全集(入门/进阶/论文/Toolkit/数据/综述/专家等)(附pdf下载)

    【专知荟萃03】知识图谱KG知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)

    【专知荟萃04】自动问答QA知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)

    【干货荟萃】机器学习&深度学习知识资料大全集(一)(论文/教程/代码/书籍/数据/课程等)

    【GAN货】生成对抗网络知识资料全集(论文/代码/教程/视频/文章等)

    【干货】Google GAN之父Ian Goodfellow ICCV2017演讲:解读生成对抗网络的原理与应用

    【AlphaGoZero核心技术】深度强化学习知识资料全集(论文/代码/教程/视频/文章等)


    欢迎转发到你的微信群和朋友圈,分享专业AI知识!

    请扫描小助手,加入专知人工智能群,交流分享~

    获取更多关于机器学习以及人工智能知识资料,请访问www.zhuanzhi.ai,  或者点击阅读原文,即可得到!

    -END-

    欢迎使用专知

    专知,一个新的认知方式!目前聚焦在人工智能领域为AI从业者提供专业可信的知识分发服务, 包括主题定制、主题链路、搜索发现等服务,帮你又好又快找到所需知识。


    使用方法>>访问www.zhuanzhi.ai, 或点击文章下方“阅读原文”即可访问专知


    中国科学院自动化研究所专知团队

    @2017 专知

    专 · 知

    关注我们的公众号,获取最新关于专知以及人工智能的资讯、技术、算法、深度干货等内容。扫一扫下方关注我们的微信公众号。


    点击“阅读原文”,使用专知


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存