【专知荟萃05】聊天机器人Chatbot知识资料全集(入门/进阶/论文/软件/数据/专家等)(附pdf下载)
点击上方“专知”关注获取更多AI知识!
【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢! 今天专知为大家呈送第五篇专知主题荟萃-聊天机器人ChatBot知识资料全集荟萃 (入门/进阶/论文/软件/数据/专家等),请大家查看!专知访问www.zhuanzhi.ai, 或关注微信公众号后台回复" 专知"进入专知,搜索主题“chatbot”查看。欢迎转发分享!此外,我们也提供该文pdf下载链接,请文章末尾查看!
了解专知,专知,一个新的认知方式!
聊天机器人 (Chatbot) 专知荟萃
入门学习
进阶论文
综述
专门会议
Tutorial
软件
Chatbot
Chinese_Chatbot
数据集
领域专家
聊天机器人 (Chatbot) 专知荟萃
入门学习
对话系统的历史(聊天机器人发展)
[http://blog.csdn.net/zhoubl668/article/details/8490310]
微软邓力:对话系统的分类与发展历程
[https://www.leiphone.com/news/201703/6PNNwLXouKQ3EyI5.html]
Deep Learning for Chatbots, Part 1 – Introduction 聊天机器人中的深度学习技术之一:导读
[http://www.jeyzhang.com/deep-learning-for-chatbots-1.html]
[http://www.wildml.com/2016/04/deep-learning-for-chatbots-part-1-introduction/]
Deep Learning for Chatbots, Part 2 – Implementing a Retrieval-Based Model in Tensorflow 聊天机器人中的深度学习技术之二:基于检索模型的实现
[http://www.jeyzhang.com/deep-learning-for-chatbots-2.html]
[http://www.wildml.com/2016/07/deep-learning-for-chatbots-2-retrieval-based-model-tensorflow/]
自己动手做聊天机器人教程(1-42)
[https://github.com/warmheartli/ChatBotCourse]
如何让人工智能助理杜绝“智障” 微软亚洲研究院
[http://www.msra.cn/zh-cn/news/features/virtual-personal-assistant-20170411]
周明:自然语言对话引擎 微软亚洲研究院
[http://www.msra.cn/zh-cn/news/features/ming-zhou-conversation-engine-20170413]
谢幸:用户画像、性格分析与聊天机器人
[http://www.msra.cn/zh-cn/news/features/xing-xie-speech-20170324]
25 Chatbot Platforms: A Comparative Table
[https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff]
聊天机器人开发指南 IBM
[https://www.ibm.com/developerworks/cn/cognitive/library/cc-cognitive-chatbot-guide/index.html]
朱小燕:对话系统中的NLP
使用深度学习打造智能聊天机器人 张俊林
[http://blog.csdn.net/malefactor/article/details/51901115]
九款工具帮您打造属于自己的聊天机器人
[http://mobile.51cto.com/hot-520148.htm]
聊天机器人中对话模板的高效匹配方法
[http://blog.csdn.net/malefactor/article/details/52166235]
中国计算机学会通讯 2017年第9期 人机对话专刊
对话系统评价技术进展及展望 by 张伟男 车万翔
人机对话 by 刘 挺 张伟男
任务型与问答型对话系统中的语言理解技术 by 车万翔 张 宇
聊天机器人的技术及展望 by 武 威 周 明
人机对话中的情绪感知与表达 by 黄民烈 朱小燕
对话式交互与个性化推荐 by 胡云华
对话智能与认知型口语交互界面 by 俞 凯
[https://pan.baidu.com/s/1o8Lv138]
中国人工智能学会通讯
从图灵测试到智能信息获取 郝 宇,朱小燕,黄民烈
智能问答技术 何世柱,张元哲,刘 康,赵 军
社区问答系统及相关技术 王 斌,吉宗诚
聊天机器人技术的研究进展 张伟男,刘 挺
如何评价智能问答系统 黄萱菁
智能助手: 走出科幻,步入现实 赵世奇,吴华
[http://caai.cn/index.php?s=/Home/Article/qikandetail/year/2016/month/01.html]
进阶论文
Sequence to Sequence Learning with Neural Networks
[http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf]
A Neural Conversational Model Oriol Vinyals, Quoc Le
[http://arxiv.org/pdf/1506.05869v1.pdf]
A Diversity-Promoting Objective Function for Neural Conversation Models
A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues
[https://arxiv.org/abs/1605.06069]
Sequence to Backward and Forward Sequences: A Content-Introducing Approach to Generative Short-Text Conversation
[https://arxiv.org/abs/1607.00970]
A Persona-Based Neural Conversation Model
[https://arxiv.org/abs/1603.06155]
Deep Reinforcement Learning for Dialogue Generation
[https://arxiv.org/abs/1606.01541]
End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning
[https://arxiv.org/abs/1606.01269]
A Network-based End-to-End Trainable Task-oriented Dialogue System
[https://arxiv.org/abs/1604.04562]
Incorporating Unstructured Textual Knowledge Sources into Neural Dialogue Systems
[http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/871]
A Neural Network Approach to Context-Sensitive Generation of Conversational Responses
[https://arxiv.org/abs/1506.06714]
A Dataset for Research on Short-Text Conversation
[http://staff.ustc.edu.cn/~cheneh/paper_pdf/2013/HaoWang.pdf\]
The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems
[https://arxiv.org/abs/1506.08909]
Joint Online Spoken Language Understanding and Language Modeling with Recurrent Neural Networks, 2016
[https://arxiv.org/abs/1609.01462]
Neural Utterance Ranking Model for Conversational Dialogue Systems, 2016
[https://www.researchgate.net/publication/312250877_Neural_Utterance_Ranking_Model_for_Conversational_Dialogue_Systems\
A Context-aware Natural Language Generator for Dialogue Systems, 2016
[https://arxiv.org/abs/1608.07076]
Task Lineages: Dialog State Tracking for Flexible Interaction, 2016
[https://www.microsoft.com/en-us/research/publication/task-lineages-dialog-state-tracking-flexible-interaction-2/]
Affective Neural Response Generation
[https://arxiv.org/abs/1709.03968]
Multi-Task Learning for Speaker-Role Adaptation in Neural Conversation Models
[https://arxiv.org/abs/1710.07388]
Chatbot Evaluation and Database Expansion via Crowdsourcing
[http://www.cs.cmu.edu/afs/cs/user/zhouyu/www/LREC.pdf]
A Neural Network Approach for Knowledge-Driven Response Generation
[http://www.aclweb.org/anthology/C16-1318]
Training End-to-End Dialogue Systems with the Ubuntu Dialogue Corpus
[http://www.cs.toronto.edu/~lcharlin/papers/ubuntu_dialogue_dd17.pdf\]
Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory ACL 2017
[https://arxiv.org/abs/1704.01074]
Flexible End-to-End Dialogue System for Knowledge Grounded Conversation
[https://arxiv.org/abs/1709.04264]
Augmenting End-to-End Dialog Systems with Commonsense Knowledge
[https://arxiv.org/abs/1709.05453]
Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems
[https://arxiv.org/abs/1511.06931]
Attention with Intention for a Neural Network Conversation Model
[https://arxiv.org/abs/1510.08565]
Response Selection with Topic Clues for Retrieval-based Chatbots
[https://arxiv.org/abs/1605.00090]
LSTM based Conversation Models
[https://arxiv.org/abs/1603.09457]
Not All Dialogues are Created Equal: Instance Weighting for Neural Conversational Models
[https://arxiv.org/abs/1704.08966]
Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders ACL 2017
[https://arxiv.org/abs/1703.10960]
Words Or Characters? Fine-Grained Gating For Reading Comprehension ACL 2017
[https://arxiv.org/abs/1611.01724v1]
综述
The Dialog State Tracking Challenge Series: A Review
[https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/williams2016dstc_overview-1.pdf\]
A Survey of Available Corpora for Building Data-Driven Dialogue Systems
[https://arxiv.org/abs/1512.05742]
任务型人机对话系统中的认知技术——— 概念、进展及其未来
[http://cjc.ict.ac.cn/online/cre/yk-2015112465445-20151210162142.pdf]
专门会议
SIGDIAL ACL所属的关于对话系统的兴趣小组
[http://www.sigdial.org/workshops/conference18/]
INTERSPEECH 2017: INTERSPEECH 2017 which will take place on August 21-24 in Stockholm, Sweden, after SIGDIAL
YRRSDS 2017: Young Researchers’ Roundtable on Spoken Dialog Systems, which will take place on August 13-14 also in Saarbrücken, Germany, right before SIGDIAL.
SemDial 2017!
[http://www.saardial.uni-saarland.de/]
Dialog System Technology Challenge (DSTC)
[https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge/]
[https://github.com/mesnilgr/is13]
Tutorial
2017 Tutorial - Deep Learning for Dialogue Systems ACL 2017
[https://sites.google.com/site/deeplearningdialogue/]
Research Blog: Computer, respond to this email.
[https://research.googleblog.com/2015/11/computer-respond-to-this-email.html]
Deep Learning for Chatbots, Part 1 – Introduction
[http://www.wildml.com/2016/04/deep-learning-for-chatbots-part-1-introduction/]
Deep Learning for Chatbots, Part 2 – Implementing a Retrieval-Based Model in Tensorflow
[http://www.wildml.com/2016/07/deep-learning-for-chatbots-2-retrieval-based-model-tensorflow/]
Chatbot Fundamentals An interactive guide to writing bots in Python
[https://apps.worldwritable.com/tutorials/chatbot/]
Chatbot Tutorial
[https://www.codeproject.com/Articles/36106/Chatbot-Tutorial#intro]
软件
Chatbot
ParlAI A framework for training and evaluating AI models on a variety of openly available dialog datasets.
[https://github.com/facebookresearch/ParlAI]
stanford-tensorflow-tutorials A neural chatbot using sequence to sequence model with attentional decoder.
[https://github.com/chiphuyen/stanford-tensorflow-tutorials/tree/master/assignments/chatbot]
ChatterBot ChatterBot is a machine learning, conversational dialog engine for creating chat bots
[http://chatterbot.readthedocs.io/]
DeepQA My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot
[https://github.com/Conchylicultor/DeepQA]
neuralconvo Neural conversational model in Torch
[https://github.com/macournoyer/neuralconvo]
chatbot-rnn A toy chatbot powered by deep learning and trained on data from Reddit
[https://github.com/pender/chatbot-rnn]
tf_seq2seq_chatbot tensorflow seq2seq chatbot
[https://github.com/nicolas-ivanov/tf_seq2seq_chatbot]
ai-chatbot-framework A python chatbot framework with Natural Language Understanding and Artificial Intelligence.
[https://github.com/alfredfrancis/ai-chatbot-framework]
DeepChatModels Conversation Models in Tensorflow
[https://github.com/mckinziebrandon/DeepChatModels]
Chatbot Build your own chatbot base on IBM Watson
[https://webchatbot.mybluemix.net/]
Chatbot An AI Based Chatbot
[http://chatbot.sohelamin.com/]
neural-chatbot A chatbot based on seq2seq architecture done with tensorflow.
[https://github.com/inikdom/neural-chatbot]
Chinese_Chatbot
Seq2Seq_Chatbot_QA 使用TensorFlow实现的Sequence to Sequence的聊天机器人模型
[https://github.com/qhduan/Seq2Seq_Chatbot_QA]
Chatbot 基於向量匹配的情境式聊天機器人
[https://github.com/zake7749/Chatbot]
chatbot-zh-torch7 中文Neural conversational model in Torch
[https://github.com/majoressense/chatbot-zh-torch7]
数据集
Cornell Movie-Dialogs Corpus
[http://www.cs.cornell.edu/cristian/CornellMovie-DialogsCorpus.html]
Dialog_Corpus Datasets for Training Chatbot System
[https://github.com/candlewill/Dialog_Corpus]
OpenSubtitles A series of scripts to download and parse the OpenSubtitles corpus.
[https://github.com/AlJohri/OpenSubtitles]
insuranceqa-corpus-zh OpenData in insurance area for Machine Learning Tasks
[https://github.com/Samurais/insuranceqa-corpus-zh]
dgk_lost_conv dgk_lost_conv 中文对白语料 chinese conversation corpus
[https://github.com/majoressense/dgk_lost_conv]
Frames: A Corpus for Adding Memory to Goal-Oriented Dialogue Systems 一共 1369 段对话,平均每段对话 15 轮。
[http://datasets.maluuba.com/Frames]
Ubuntu Dialogue Corpus
[http://dataset.cs.mcgill.ca/ubuntu-corpus-1.0/]
领域专家
Cambridge Dialogue Systems Group Steve Young
[http://mi.eng.cam.ac.uk/research/dialogue/]
Ming Zhou
[https://www.microsoft.com/en-us/research/people/mingzhou/]
Jiwei Li(李纪为), - [http://web.stanford.edu/jiweil/]
Ryan Lowe, - [http://cs.mcgill.ca/rlowe1/]
Lili Mou
[https://lili-mou.github.io/]
Jason Williams Microsoft
[https://www.microsoft.com/en-us/research/people/jawillia/]
Bing Liu (刘冰) CMU
[http://bingliu.me/]
Ian Lane
[http://www.cs.cmu.edu/~ianlane/#&panel1-1]
Ondřej Dušek
https://ufal.mff.cuni.cz/ondrej-dusek
Sungjin Lee 微软
[https://www.microsoft.com/en-us/research/people/sule/]
Zhou Yu 俞舟 CMU
[http://www.cs.cmu.edu/~zhouyu/]
华为诺亚实验室
[http://www.noahlab.com.hk/topics/ShortTextConversation]
刘挺 哈尔滨工业大学
[http://ir.hit.edu.cn/~tliu]
张伟男 哈尔滨工业大学 - [http://ir.hit.edu.cn/~wnzhang]
Wei Wu (武威) 微软
[https://www.microsoft.com/en-us/research/people/wuwei/]
赵军 中科院自动化所
[http://www.nlpr.ia.ac.cn/cip/jzhao.htm]
黄民烈 清华
[http://aihuang.org/p/]
汇总不全面,欢迎补全和提建议,敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取最新AI相关知识
特注:
最新更新,请登录www.zhuanzhi.ai或者点击阅读原文,顶端搜索“ 聊天机器人” 主题,查看获得自动问答专知荟萃全集知识等资料!如下图所示~
此外,请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知),
后台回复“chatbot” 或者“聊天机器人”就可以获取专知聊天机器人荟萃知识资料pdf下载链接~~
更多专知荟萃知识资料全集获取,请查看:
【专知荟萃01】深度学习知识资料大全集(入门/进阶/论文/代码/数据/综述/领域专家等)(附pdf下载)
【专知荟萃02】自然语言处理NLP知识资料大全集(入门/进阶/论文/Toolkit/数据/综述/专家等)(附pdf下载)
【专知荟萃03】知识图谱KG知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)
【专知荟萃04】自动问答QA知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)
【干货荟萃】机器学习&深度学习知识资料大全集(一)(论文/教程/代码/书籍/数据/课程等)
【GAN货】生成对抗网络知识资料全集(论文/代码/教程/视频/文章等)
【干货】Google GAN之父Ian Goodfellow ICCV2017演讲:解读生成对抗网络的原理与应用
【AlphaGoZero核心技术】深度强化学习知识资料全集(论文/代码/教程/视频/文章等)
欢迎转发到你的微信群和朋友圈,分享专业AI知识!
请扫描小助手,加入专知人工智能群,交流分享~
获取更多关于机器学习以及人工智能知识资料,请访问www.zhuanzhi.ai, 或者点击阅读原文,即可得到!
-END-
欢迎使用专知
专知,一个新的认知方式!目前聚焦在人工智能领域为AI从业者提供专业可信的知识分发服务, 包括主题定制、主题链路、搜索发现等服务,帮你又好又快找到所需知识。
使用方法>>访问www.zhuanzhi.ai, 或点击文章下方“阅读原文”即可访问专知
中国科学院自动化研究所专知团队
@2017 专知
专 · 知
关注我们的公众号,获取最新关于专知以及人工智能的资讯、技术、算法、深度干货等内容。扫一扫下方关注我们的微信公众号。
点击“阅读原文”,使用专知!